A power supply unit (PSU) supplies direct current (DC) power to the other components in a computer. It converts general-purpose alternating current (AC) electric power from the mains (110 V to 120 V at 60 Hz [115 V nominal] in North America, parts of South America, Japan, and Taiwan; 220 V to 240 V at 50 Hz [230 V nominal] in most of the rest of the world) to low-voltage (for a desktop computer: 12 V, 5 V, 5VSB, 3V3, −5 V, and −12 V) DC power for the internal components of the computer. Some power supplies have a switch to select either 230 V or 115 V. Other models are able to accept any voltage and frequency between those limits and some models only operate from one of the two mains supply standards.
Most modern desktop computer power supplies conform to the ATX form factor. ATX power supplies are turned on and off by a signal from the motherboard. They also provide a signal to the motherboard to indicate when the DC power lines are correct so that the computer is able to boot up. While an ATX power supply is connected to the mains supply it provides a 5 V stand-by (5VSB) line so that the standby functions on the computer and certain peripherals are powered. The most recent ATX PSU standard is version 2.31 of mid-2008.
Power rating and efficiency
Computer power supplies are rated based on their maximum output power. Typical power ranges are from 500 W to lower than 300 W for small form factor systems intended as ordinary home computers, the use of which is limited to web-surfing and burning and playing DVDs. Power supplies used by gamers and enthusiasts mostly range from 450 W to 1400 W. Typical gaming PCs feature power supplies in the range of 350–800 W, with higher-end PCs demanding 800–1400 W supplies. The highest-end units are up to 2 kW strong and are intended mainly for servers and, to a lesser degree, extreme performance computers with multiple processors, several hard disks and multiple graphics cards. The power rating of a PC power supply is not officially certified and is self-claimed by each manufacturer. A common way to reach the power figure for PC PSUs is by adding the power available on each rail, which will not give a true power figure. Therefore it is possible to overload a PSU on one rail without having to use the maximum rated power.This may mean that if:
- PSU A has a peak rating of 550 watts at 25°C, with 25 amps (300 W) on the 12 volt line, and
- PSU B has a continuous rating of 450 watts at 40°C with 33 amps (400 W) on the 12 volt line,
This tendency has led in turn to greatly overspecified power supply recommendations, and a shortage of high-quality power supplies with reasonable capacities. Simple, general purpose computers rarely require more than 300–350 watts maximum. Higher end computers such as servers and gaming machines with multiple high power GPUs are among the few exceptions.
Appearance
Most computer power supplies are a square metal box, and have a large bundle of wires emerging from one end. Opposite the wire bundle is the back face of the power supply, with an air vent and an IEC 60320 C14 connector to supply AC power. There may optionally be a power switch and/or a voltage selector switch. A label on one side of the box lists technical information about the power supply, including safety certifications maximum output power. Common certification marks for safety are the UL mark, GS mark, TÜV, NEMKO, SEMKO, DEMKO, FIMKO, CCC, CSA, VDE, GOST R and BSMI. Common certificate marks for EMI/RFI are the CE mark, FCC and C-tick. The CE mark is required for power supplies sold in Europe and India.A RoHS or 80 PLUS can also sometimes be seen.
Dimensions of an ATX power supply are 150 mm width, 86 mm height, and typically 140 mm depth, although the depth can vary from brand to brand.
Connectors
Typically, power supplies have the following connectors (all are Molex (USA) Inc Mini-Fit Jr, unless otherwise indicated):- PC Main power connector (usually called P1): This is the connector that goes to the motherboard to provide it with power. The connector has 20 or 24 pins. One of the pins belongs to the PS-ON wire (it is usually green). This connector is the largest of all the connectors. In older AT power supplies, this connector was split in two: P8 and P9. A power supply with a 24-pin connector can be used on a motherboard with a 20-pin connector. In cases where the motherboard has a 24-pin connector, some power supplies come with two connectors (one with 20-pin and other with 4-pin) which can be used together to form the 24-pin connector.
- ATX12V 4-pin power connector (also called the P4 power connector). A second connector that goes to the motherboard (in addition to the main 24-pin connector) to supply dedicated power for the processor. For high-end motherboards and processors, more power is required, therefore EPS12V has an 8 pin connector.
- 4-pin Peripheral power connectors: These are the other, smaller connectors that go to the various disk drives of the computer. Most of them have four wires: two black, one red, and one yellow. Unlike the standard mains electrical wire color-coding, each black wire is a ground, the red wire is +5 V, and the yellow wire is +12 V. In some cases these are also used to provide additional power to PCI cards such as FireWire 800 cards.